Reanalysis of buffer zones
Carol Wilson
17 January 2011

From Rob Millenaar:

1) Farms, farmsteads and buildings
 Wall attenuation: The SPDO aims to apply a wall attenuation halfway between the 0 (position
 Australia) and 10 dB (South Africa), a linear factor of 5 (or 7 dB), for those devices that would
 benefit from any wall attenuation, i.e. used inside a dwelling. In the mix of tools and appliances
 that would concern only the 7 ordinary household appliances, the 2 tools less than 700W and 1
 tool 700-1000W. Obviously not to the vehicle and the tool >1000W. This is a practical way to
 avoid having to do measurements.
 Antenna height: The SPDO also follows the recommendation to use 1.5 meter as radiator
 antenna height instead of the current 2 meter.

Using the following inputs (new values are underlined):
 7 household appliances
 2 tools < 700 W
 1 tool 700 – 1000 W
 7 dB attenuation applied to above
 1 tool > 1000 W
 1 vehicle with 20 dB reduction from standards
 1.5 m height of interfering sources rather than 2 m

Results:

<table>
<thead>
<tr>
<th>Class</th>
<th>Number of people</th>
<th>Households</th>
<th>Clutter due to town (dB)</th>
<th>Old buffer zone (km)</th>
<th>New buffer zone (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farm/homestead</td>
<td>1</td>
<td>0</td>
<td>13.5</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>Town grade 1</td>
<td>< 100</td>
<td>7</td>
<td>0</td>
<td>21</td>
<td>16.5</td>
</tr>
<tr>
<td>Town grade 2</td>
<td>100 – 1000</td>
<td>67</td>
<td>5</td>
<td>27</td>
<td>21</td>
</tr>
<tr>
<td>Town grade 3</td>
<td>1000 – 5000</td>
<td>350</td>
<td>10</td>
<td>31</td>
<td>23.5</td>
</tr>
<tr>
<td>Town grade 4</td>
<td>> 5000</td>
<td>700</td>
<td>10</td>
<td>37.5</td>
<td>28</td>
</tr>
</tbody>
</table>

2) Rail
 A final recommendation concerns the use of realistic (lower than 0 dBi at the horizon) antenna
 gains for aperture arrays. However we have argued that the mask buffer zones were those for
 dishes at 300 MHz because levels were less at lower frequencies. This is true for all types of EMI,
 except for rail. We should redo the analysis for rail, using the more appropriate antenna gains for
 aperture arrays.

 In the receiver saturation considerations document Dave DeBoer et al have used -29dBi
 (@70MHz) to -10 dBi (@300MHz), and we should use the same specification.

Results:
 Major rail: buffer reduces from 30.5 km to 12.5 km.
 Minor rail: buffer reduces from 10.5 km to 3.3 km. As before, this assumes that 5% of the time,
 interference from rail engines passing near the telescope site will be allowed to cause
 interference. If a "no interference" criteria is applied, the buffer zone (using the new antenna
 assumptions) is 7.5 km (where it would have been 12.5 km with the old antenna assumptions).